A priori error estimates of fully discrete finite element Galerkin method for Kelvin–Voigt viscoelastic fluid flow model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Priori Error Estimates for Some Discontinuous Galerkin Immersed Finite Element Methods

In this paper, we derive a priori error estimates for a class of interior penalty discontinuous Galerkin (DG) methods using immersed finite element (IFE) functions for a classic second-order elliptic interface problem. The error estimation shows that these methods can converge optimally in a mesh-dependent energy norm. The combination of IFEs and DG formulation in these methods allows local mes...

متن کامل

Simulation for Viscoelastic Flow by a Finite Volume/Element Method

Stability of a second-order finite element/finite volume hybrid scheme is investigated on the basis of flows with increasing Weissenberg number. Finite elements are used to discretise the balances of mass and momentum. For the stress equation a finite volume method is used, based on the recent development with fluctuation distribution schemes for pure convection problems. Examples considered in...

متن کامل

Error estimates for the standard Galerkin-finite element method for the shallow water equations

We consider a simple initial-boundary-value problem for the shallow water equations in one space dimension, and also the analogous problem for a symmetric variant of the system. Assuming smoothness of solutions, we discretize these problems in space using standard Galerkin-finite element methods and prove L2-error estimates for the semidiscrete problems for quasiuniform and uniform meshes. In p...

متن کامل

buckling of viscoelastic composite plates using the finite strip method

در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....

Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations

Discontinuous Galerkin (DG) finite element methods were studied by many researchers for second-order elliptic partial differential equations, and a priori error estimates were established when the solution of the underlying problem is piecewise H3/2+ smooth with > 0. However, elliptic interface problems with intersecting interfaces do not possess such a smoothness. In this paper, we establish a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2019

ISSN: 0898-1221

DOI: 10.1016/j.camwa.2019.06.018